
Background: Dose-escalation studies in oncology are typically 
performed to assess safety, tolerability, and pharmacokinetics (PK) 
and ultimately determine the maximum tolerated dose (MTD).  The 
majority of studies fail to meet enrollment timelines due to the well 
know difficulties associated to the recruiting of cancer patients. 
Extensive blood sampling required for PK assessment and the 
associated confinement of patients remain an important challenge for 
recruiting patients. A retrospective analysis was performed to 
determine whether sparse sampling strategies may be developed as 
part of a dose-escalation trial to optimize PK, minimize confinement 
and facilitate enrollment of cancer patients. 

Methods: Dose-escalation studies involving ≥6 cohorts, ≥15 blood 
samples per patient and confinement ≥24 hours were included in the 
analysis. Sparse sampling strategies were developed following accrual 
of PK data from each cohort. Precision and bias of the area under the 
curve (AUC) and maximum concentrations (Cmax) derived with rich 
and sparse samplings were calculated using trial simulations. Relative 
standard error (RSE) on AUC and Cmax derived with sparse sampling 
was deemed acceptable. Modeling and simulations were performed 
using NONMEM (version 7.2) Optimal sampling strategies were 
developed with WinPOPT. 

Results: For drugs with simple PK behavior (e.g., 1-compartment 
model, linear elimination), population PK models based on rich 
samples in Cohort 1-2 resulted in acceptable prediction of AUC and 
Cmax based on sparse samples collected in Cohorts 3-6. For drugs with 
more complex PK behavior (e.g., 2 or 3-compartment model), rich PK 
data in Cohort 1-3 resulted in acceptable prediction of PK based on 
sparse samples in Cohorts 4-6. For drugs with non-linear or target-
mediated elimination, rich PK data in Cohort 1-4 may be required to 
minimize bias. 

Conclusion: The above results suggest that sparse sampling strategies 
may be developed to optimize PK, facilitate enrollment of cancer 
patients and accelerate completion of dose-escalation studies. 
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Operational Challenges of Phase I Oncology Studies 
• Western markets are saturated: Patient enrollment and retention is 

more challenging than ever (scarce subjects) 
• The majority of studies fail to meet enrollment timelines due to 

the well know difficulties associated to the recruiting of cancer 
patients.  

• Extensive blood sampling required for PK assessment and the 
associated confinement of patients remain an important challenge 
for recruiting patients.  

 
Opportunity 
• Perform PK modeling based on data from first 3 cohorts, develop a 

sparse sampling strategy and apply in subsequent cohorts (e.g., 4, 
5, 6…) 

• The sparse sampling strategy will remove burden on patient and 
facilitate patient enrollment 

• This will allow to reach MTD faster, and ultimately complete the 
trial earlier. 

Sparse sampling strategies were developed following accrual of PK data from 
each cohort. Modeling and simulations were performed using NONMEM 
(version 7.2). Optimal sampling strategies were developed with WinPOPT. 

Population precision and bias of PK parameters (CL, V, …), of the area under 
the curve [AUC] and maximum concentrations [Cmax]) derived with rich and 
sparse samplings were compared. Relative standard error (RSE) on PK 
parameters were those estimated with NONMEM and the RSE of AUC and 
Cmax were derived using trial simulations. The bias was calculated with the 
following equation: 

 

 

Where PKalldata are parameters derived with the rich data and PKsparse are 
parameters derived with the sparse dataset 

For drugs with simple PK behavior (e.g., 1-compartment model, linear elimination), population PK models based on rich samples in Cohort 1-2 resulted in acceptable prediction of 
AUC and Cmax based on sparse samples collected in Cohorts 3-10.  

Table 1. Relative Standard Error and Bias of PK Parameters for a Tyrosine Kinase Inhibitor Based on Rich and Sparse sampling - Drug with Long Half-Life, 1-Compartment Model 

 

 

 

 

 

 

 

 

 

Modeling and simulations (M&S) may be used in Phase I to develop sparse 
sampling strategies and minimize blood sampling burden The following 
framework was developed to optimize the PK component of Phase I 
oncology studies.  

The above modeling and simulations suggests that sparse sampling strategies may be developed to optimize PK analysis in Phase I oncology studies.  

The proposed sparse sampling strategies were shown to be robust for a wide varieties of products, with different ranges of half-lives (i.e., short and long) 

The sparse sampling strategy may facilitate enrollment of cancer patients and accelerate completion of dose-escalation studies. 

Protocols may be designed to prospectively allow a reduction of blood sampling for PK in later cohorts during the study. 

The implementation of M&S in Phase I oncology studies may also be used to integrate PK/PD knowledge for decision making (Aarons et al. Eur J Pharm Sci. 2001. 13(2):115-22) 

Legend: 

DLT:  Dose-limiting toxicity 

SD: Starting dose 

RD: Recommended dose 

 

Figure 1: Modeling and Simulations Framework: Sparse Sampling  
to Facilitate Enrollment of Cancer Patients in Phase I 
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Parameters 

Relative Standard Error| Bias 
Reference: 
10 cohorts   

with Rich Sampling 
(N=64) 

First Two Cohorts 
with Rich  

Sampling (N=6) 

First Two Cohorts with Rich Sampling  

+ 2 cohorts  
with sparse sampling (N=16) 

+ 4 cohorts  
with sparse sampling (N=24) 

+ 6 cohorts  
with sparse sampling (N=49) 

+ 8 cohorts  
with sparse sampling (N=64) 

Ka (h-1) 9.7% 36.8% -40.2% 24.0% 3.9% 18.9% 9.0% 12.5% 13.7% 11.4% 5.3% 

CL (L/h) 10.2% 16.5% -10.9% 20.8% 7.2% 15.2% 0.6% 10.2% -2.4% 9.2% -3.6% 

Vc (L) 8.7% 8.3% -8.6% 8.2% -14.1% 9.6% -13.3% 8.4% -10.8% 6.8% -9.0% 

CmaxSS  8.2% 17.9% 11.6% 23.9% 0.3 14.7% 2.8% 9.0% 4.5% 8.5% 5.3% 

AUCSS 9.0% 18.8% 14.6% 21.2% -1.9% 16.5% 0.9% 10.1% 3.0% 9.5% 4.5% 

Optimal sampling strategy: predose, 2 and 9 h postdose  

 

RSE: Derived from NONMEM for the typical values (CL, Vc, 
Ka) and exposure derived with trial simulation (Cmax, AUC) 

 

Population  
PK Parameters 

Relative Standard Error| Bias 
Reference: 

5 cohorts  with  
Rich Sampling 

(N=71) 

First 2 with Rich 
Sampling  
(N=10) 

First Two Cohorts with Rich Sampling  

+ 2 cohorts with 
sparse (N=22) 

+ 4 cohorts with 
sparse (N=71) 

Ka (h-1) 9.6% 55.1% -41.3% 41.5% -69.8% 26.7% -73.2% 

Lagtime (h) 0.1% 1.9% 18.9% 1.0% -0.4% 1.4% 1.2% 

CL/F (L/h) 5.9% 12.4% 1.9% 10.2% -13.0% 6.3% 2.8% 

Vc/F (L) 9.4% 14.2% -0.7% 15.1% 15.5% 10.4% 4.0% 

Q/F (L/h) 17.1% 16.4% -16.6% 38.8% -66.1% 22.2% -31.6% 

Vp/F (L) 9.3% 17.5% -19.7% 24.3% -42.2% 10.0% -17.4% 

CmaxSS –QD 6.4% 15.4% 3.0% 14.4% 5.7% 8.5% 5.5% 

CmaxSS –BID 6.3% 23.4% 1.6% 22.2% 6.2% 8.0% 3.6% 

AUCSS –QD 6.0% 13.3% -0.2% 10.4% 16.0% 6.5% -2.6% 

Table 2. Relative Standard Error and Bias of PK Parameters for a Small Molecule 
with Potent Multi-kinase Inhibitor Activity Based on Rich and Sparse Sampling  
– Drug with Short Half-Life, 2-Compartment Model 

Table 3. Relative Standard Error and Bias of PK Parameters for an Oral Drug that 
Induces Apoptosis Based on  Rich and Sparse Sampling  
– Drug with Long Elimination Half-Life, 2-Compartment Model 

Population  
PK Parameters 

 Relative Standard Error| Bias 
Reference: 

5 cohorts  with rich 
sampling 
(N=37) 

First 2 with rich  
(N=6) 

First Two Cohorts with Rich Sampling  

+ 2 cohorts with 
sparse (N=13) 

+ 4 cohorts with 
sparse (N=37) 

CL (L/h) 7.0% 12.1% 39.1% 10.7% 31.5% 8.2% -6.5% 

Vc (L) 5.0% 5.4% -7.0% 5.1% 3.6% 4.1% -1.1% 

Q (L/h) 10.3% 21.8% -35.9% 19.5% -34.9% 16.2% -1.0% 

Vp (L) 10.9% 24.4% -8.1% 19.5% -10.2% 14.6% -6.3% 

CmaxSS 6.4% 14.2% -7.3% 12.8% -15.3% 7.7% -5.0% 

AUCSS 6.9% 12.9% -27.4% 10.9% 23.6% 8.5% -6.1% 

Optimal sampling strategy:  
predose, 0.5, 4 and 12 h postdose 

RSE: Derived from NONMEM for the typical 
values (Ka, Lagtime, CL/F, Vc/F, Q/F, Vp/F)  
and derived with trial simulation for drug 
exposure (Cmax, AUC) 

 

Optimal Sampling Strategy: 
predose, 1, 96 and 240 h postdose 

RSE: Derived from NONMEM for the typical values 
(Ka, Lagtime, CL/F, Vc/F, Q/F, Vp/F)  and 
derived with trial simulation for drug exposure 
(Cmax, AUC) 
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Dose-escalation 
studies involving ≥6 
cohorts, ≥15 blood 
samples per patient 
and confinement ≥24 
hours were included 
in the analysis.  
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