
AUC (mg/L.h)

Hilli 2017* 0.109 0.096 1.1

Van Erp 2011 0.125 0.182 0.7

Tham 2006* 0.219 0.17 1.3

Lepper 2005* 0.083 0.09 0.9

Caffeine (Goh 2010) (Geo mean) 31.55 24.819 1.3

Rosiglitazone (Lorusso 2013)* 1.478 1.3 1.1

Rosiglitazone (Nguyen 2015) 1.612 1.713 0.9

S-Warfarin (Agarwal 2016) 12.113 8.7 1.4

S-Warfarin (Camidge 2005)* (Geo mean) 37.048 41.4 0.9

S-Warfarin (Thsimberidou 2011) 57.041 73.86 0.8

Tolbutamide (Shord 2008)* 715.507 690.8 1.0

Digoxin (Bjornsson 1986) 0.023 0.03 0.8
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Background
Physiologically based pharmacokinetic (PBPK) modelling can be used to
predict the pharmacokinetics of drugs. By combining PBPK models with in
vitro-in vivo extrapolation approaches, it is possible to parameterise human
PBPK models as an alternative to animal testing. A further strength of PBPK
modelling is that by describing the demographics, physiology, biochemistry
and drug metabolising enzyme/transporter levels in different sub-
populations, it is possible to explore differences in pharmacokinetics
between different groups of individuals. Herein we demonstrate the utility
of a PBPK model to predict the pharmacokinetics in cancer patients.

Methods

Literature searches were conducted to find references describing changes in
physiological parameters in >3000 patients with cancer compared to healthy
subjects, which were incorporated into the generalized Sim-Cancer
population in the Simcyp® Simulator V18. The mean AUC and clearance of 6
compounds (Midazolam, Caffeine, Rosiglitazone, S-Warfarin, Tolbutamide
and Digoxin) was simulated using the cancer population and compared to
observed data in cancer patients. The predicted concentration-time profile
of 3 anti-cancer agents (Docetaxel, Methotrexate, and Paclitaxel) using the
cancer population were also compared with the results from clinical studies.
All the simulated study designs were matched (age, sex and the number of
subjects) with the relevant clinical studies. Each simulation was performed,
using 10 trials of the number of individuals in each clinical study and the
predicted AUC values were calculated for the same duration as the
observed studies.

Results

1. Meistelman et al., Anesthesiology (1988) 69: A602.

2. Meta-analysis including Bower et al., J Pharm Pharmacol (1989) 41: 654-657.

3. Oostendorp et al., Clin Cancer Res (2009) 15: 4228-4233.

4. Aherne et al., Br Med J. (1978) 1: 1097-1099.

5. Tan et al., Br. J. Cancer (2014) 110: 2647–2654.

Conclusions 

The utility of the developed PBPK cancer population in predicting the
pharmacokinetics of drugs in cancer patients was demonstrated by:

• Accounting for the physiological changes due to cancer in the developed
population.

• Verification of the population using 6 different drugs.

• Application of the population in predicting the exposure of 3 anti-cancer
drugs.

PBPK models are useful tools to predict the PK of drugs in development,
which cannot easily be assessed in a clinical study. Furthermore, it can be
used as a practical alternative to animal testing in drug development.
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Figure 1: Observed (Independent data) and predicted mean (± SD) of (A) Albumin
and (B) AAG plasma levels in cancer patients and healthy volunteers.

Results

Figure 2: Simulated (black line) and observed (open circles) mean concentration-
time profile of 3 anti-cancer drugs (Docetaxel3, Methotrexate4, Paclitaxel5). The
grey lines represent the predictions from individual trials. Dashed lines represent
the 5th and 95th percentiles of the simulations.
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Table 1: Plasma unbound fraction (fup) of Alfentanil. Observed data is from colo-
rectal cancer patients1

Midazolam 

Clearance (L/h)

Tham 2006 25.1 26.4 1.0

Lepper 2005 23.6 24.4 1.0

S-Warfarin (Agarwal 2016) 0.3 0.587 0.5

S-Warfarin (Camidge 2005) (Geo mean) 0.3 0.484 0.6

S-Warfarin (Thsimberidou 2011) 0.3 0.28 1.1

Tolbutamide (Shord 2008) 1.0 1.17 0.9

*AUC to infinity

Midazolam (IV)

Cancer patients have increased Alpha 1-acid glycoprotein (AAG) and
decreased albumin plasma levels (Figure 1). These physiological changes
result in lower plasma unbound fraction (fup) of Alfentanil in cancer
patients compared to healthy subjects, because this compound is highly
bound to AAG (Table 1).

Midazolam (IV)

The simulated AUC of Midazolam, Caffeine, Rosiglitazone, S-warfarin,
Tolbutamide and Digoxin, and clearance of Midazolam, S-Warfarin, and
Tolbutamide in cancer population were within 1.4 fold of the observed
values in cancer patients (Table 2 and 3).
Table 3: Observed and predicted mean clearance of 3 compounds

The predicted pharmacokinetics of the 3 anti-cancer drugs using the Sim-
Cancer population could capture the observed values, with the majority of
the observed data lying within the 5th and 95th percentiles of the
simulated concentration-time profiles of the population (Figure 2).

Table 2: Observed and predicted mean AUC of 6 compounds

Compounds

Compounds

We thank Sanofi® for supplying data from cancer patients.

Predicted/
Observed ratio

Alfentanil
Cancer : 5.7 ± 1.75

Healthy: 10.4*

Cancer : 6.9 ± 2.3

Healthy : 11.7 ± 2.3

Cancer : 1.2

*This value is from a meta-analysis of fup of Alfentanil in healthy subjects2

Compound Observed fup% Simulated fup%

Predicted/Observed
ratio

Predicted/Observed
ratio

Predicted Observed

Predicted Observed




