Drug Discovery Using Chemical Systems Biology: Repositioning the Safe Medicine Comtan to Treat Multi-drug and Extensively Drug Resistant Tuberculosis

The rise of multi-drug resistant (MDR) and extensively drug resistant (XDR) tuberculosis around the world, including in industrialized nations, poses a great threat to human health and defines a need to develop new, effective and inexpensive anti-tubercular agents. Previously we developed a chemical systems biology approach to identify off-targets of major pharmaceuticals on a proteome-wide … Continued

Drug Discovery Using Chemical Systems Biology: Identification of the Protein-ligand Binding Network to Explain the Side Effects of CETP Inhibitors

Systematic identification of protein-drug interaction networks is crucial to correlate complex modes of drug action to clinical indications. We introduce a novel computational strategy to identify protein-ligand binding profiles on a genome-wide scale and apply it to elucidating the molecular mechanisms associated with the adverse drug effects of Cholesteryl Ester Transfer Protein (CETP) inhibitors. CETP … Continued

In Silico Elucidation of the Molecular Mechanism Defining the Adverse Effect of Selective Estrogen Receptor Modulators

Early identification of adverse effect of preclinical and commercial drugs is crucial in developing highly efficient therapeutics, since unexpected adverse drug effects account for one-third of all drug failures in drug development. To correlate protein-drug interactions at the molecule level with their clinical outcomes at the organism level, we have developed an integrated approach to … Continued

1 of 1
Back to top
Powered by Translations.com GlobalLink OneLink Software