Skip to main content

Excretion of the Principal Urinary Metabolites of Phenytoin and Absolute Oral Bioavailability Determined by Use of a Stable Isotope in Patients with Epilepsy

The anticonvulsant properties of phenytoin (PHT) were discovered in 1938. Since then, it has been one of the most widely used antiepileptic drugs. It is slowly absorbed, extensively plasma protein-bound, exhibits a nonlinear, concentration-dependent pharmacokinetic profile, and has a narrow therapeutic range.
We determined PHT bioavailability during steady-state therapy by 1) measurement of the two principal deconjugated PHT urinary metabolites, 5-(4-hydroxyphenyl)-5-phenylhydantoin (p-HPPH) and 5-(3,4-dihydroxy-1,5-cyclohexadien-1-yl)-5-phenylhydantoin (DHD); and 2) direct determination of absolute bioavailability after simultaneous administration of an oral formulation and parenteral stable-labeled PHT (SL-PHT). Urinary metabolites were quantified by an isocratic HPLC-NI-APCI-MS method. The urinary dose recovery was calculated by dividing the molar recovery of the major PHT urinary metabolites by the molar dose received.
Urinary metabolite recovery was surprisingly low, 35.4% ± 15.7% in younger patients (age 21-49 years old) and 32.9% ± 15.0% in patients aged 65 to 93 years. Absolute bioavailability was 86.4% ± 19.4% and 92.5% ± 25.2%, respectively. A weak, but significant, Spearman rank correlation was observed between urinary metabolite recovery and oral bioavailability (P = 0.00924, R = 0.166).
This weak correlation may be the result of variability in urinary versus biliary-fecal excretion of p-HPPH glucuronide. This study demonstrates that daily PHT oral absorption exhibits wide interpatient variability, which may account for fluctuations in PHT concentration over time.



Powered by GlobalLink OneLink Software