A Tutorial on Pharmacodynamic Scripting Facility in Simcyp

The Simcyp® Simulator provides a framework for mechanistic Physiologically-Based Pharmacokinetic/Pharmacodynamic modelling of potentially interacting drugs. It also provides a scripting facility, using the Lua language, for developing customised pharmacodynamic and toxicity models driven by drug concentrations at the site of action.

A Six-stage Workflow for Robust Application of Systems Pharmacology

Quantitative and systems pharmacology (QSP) is increasingly being applied in pharmaceutical research and development. One factor critical to the ultimate success of QSP is the establishment of commonly accepted language, technical criteria, and workflows. We propose an integrated workflow that bridges conceptual objectives with underlying technical detail to support the execution, communication, and evaluation of … Continued

Development of a Multicompartment Permeability-limited Lung PBPK Model and Its Application in Predicting Pulmonary Pharmacokinetics of Antituberculosis Drugs

Achieving sufficient concentrations of antituberculosis (TB) drugs in pulmonary tissue at the optimum time is still a challenge in developing therapeutic regimens for TB. A physiologically based pharmacokinetic model incorporating a multi-compartment permeability-limited lung model was developed and used to simulate plasma and pulmonary concentrations of seven drugs. Passive permeability of drugs within the lung was predicted using an in vitro-in vivo extrapolation approach. Simulated epithelial lining fluid (ELF):plasma concentration ratios showed reasonable … Continued

Interaction Between Domperidone and Ketoconazole: Toward Prediction of Consequent QTc Prolongation Using Purely In Vitro Information

We aimed to investigate the application of combined mechanistic pharmacokinetic (PK) and pharmacodynamic (PD) modeling and simulation in predicting the domperidone (DOM) triggered pseudo-electrocardiogram modification in the presence of a CYP3A inhibitor, ketoconazole (KETO), using in vitro-in vivo extrapolation. In vitro metabolic and inhibitory data were incorporated into physiologically based pharmacokinetic (PBPK) models within Simcyp to simulate time course of plasma DOM … Continued

Application of a Physiologically-based Pharmacokinetic Model to Predict OATP1B1-related Variability in Pharmacodynamics of Rosuvastatin

Typically, pharmacokinetic-pharmacodynamic (PK/PD) models use plasma concentration as the input that drives the PD model. However, interindividual variability in uptake transporter activity can lead to variable drug concentrations in plasma without discernible impact on the effect site organ concentration. A physiologically based PK/PD model for rosuvastatin was developed that linked the predicted liver concentration to the PD response model. The model was then applied to predict the effect of genotype-dependent uptake … Continued

Physiologically-based Pharmacokinetic Modeling Framework for Quantitative Prediction of an Herb–Drug Interaction

Herb–drug interaction predictions remain challenging. Physiologically based pharmacokinetic (PBPK) modeling was used to improve prediction accuracy of potential herb–drug interactions using the semipurified milk thistle preparation, silibinin, as an exemplar herbal product. Interactions between silibinin constituents and the probe substrates warfarin (CYP2C9) and midazolam (CYP3A) were simulated. A low silibinin dose (160 mg/day × 14 … Continued

Population Pharmacokinetics of Azithromycin in Whole Blood, Peripheral Blood Mononuclear Cells, and Polymorphonuclear Cells in Healthy Adults

Azithromycin’s extensive distribution to proinflammatory cells, including peripheral blood mononuclear cells (PBMCs) and polymorphonuclear cells (PMNs), may be important to its antimicrobial and anti-inflammatory properties. The need to simultaneously predict azithromycin concentrations in whole blood (“blood”), PBMCs, and PMNs motivated this investigation. A single-dose study in 20 healthy adults was conducted, and nonlinear mixed effects … Continued

A Systems Pharmacology Perspective on the Clinical Development of Fatty Acid Amide Hydrolase Inhibitors for Pain

The level of the endocannabinoid anandamide is controlled by fatty acid amide hydrolase (FAAH). In 2011, PF-04457845, an irreversible inhibitor of FAAH, was progressed to phase II clinical trials for osteoarthritic pain. This article discusses a prospective, integrated systems pharmacology model evaluation of FAAH as a target for pain in humans, using physiologically based pharmacokinetic … Continued

1 of 2
Back to top
Powered by Translations.com GlobalLink OneLink Software